A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation.

نویسندگان

  • Xiaolei Zhang
  • Ying Sun
  • Roberta Pireddu
  • Hua Yang
  • Murali K Urlam
  • Harshani R Lawrence
  • Wayne C Guida
  • Nicholas J Lawrence
  • Saïd M Sebti
چکیده

STAT3-STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding, and transcriptional regulation of downstream target genes. Here, we describe a small molecule S3I-1757 capable of disrupting STAT3-STAT3 dimerization, activation, and malignant transforming activity. Fluorescence polarization assay and molecular modeling suggest that S3I-1757 interacts with the phospho-Y-705-binding site in the SH2 domain and displaces fluorescein-labeled GpYLPQTV phosphotyrosine peptide from binding to STAT3. We generated hemagglutinin (HA)-tagged STAT3 and FLAG-tagged STAT3 and showed using coimmunoprecipitation and colocalization studies that S3I-1757 inhibits STAT3 dimerization and STAT3-EGF receptor (EGFR) binding in intact cells. Treatment of human cancer cells with S3I-1757 (but not a closely related analog, S3I-1756, which does not inhibit STAT3 dimerization), inhibits selectively the phosphorylation of STAT3 over AKT1 and ERK1/2 (MAPK3/1), nuclear accumulation of P-Y705-STAT3, STAT3-DNA binding, and transcriptional activation and suppresses the expression levels of STAT3 target genes, such as Bcl-xL (BCL2L1), survivin (BIRC5), cyclin D1 (CCND1), and matrix metalloproteinase (MMP)-9. Furthermore, S3I-1757, but not S3I-1756, inhibits anchorage-dependent and -independent growth, migration, and invasion of human cancer cells, which depend on STAT3. Finally, STAT3-C, a genetically engineered mutant of STAT3 that forms a constitutively dimerized STAT3, rescues cells from the effects of S3I-1757 inhibition. Thus, we have developed S3I-1757 as a STAT3-STAT3 dimerization inhibitor capable of blocking hyperactivated STAT3 and suppressing malignant transformation in human cancer cells that depend on STAT3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)

Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...

متن کامل

A Small Molecule Compound Targeting STAT3 DNA-Binding Domain Inhibits Cancer Cell Proliferation, Migration, and Invasion

Signal transducer and activator of transcription 3 (STAT3) plays important roles in multiple aspects of cancer aggressiveness including migration, invasion, survival, self-renewal, angiogenesis, and tumor cell immune evasion by regulating the expression of multiple downstream target genes. STAT3 is constitutively activated in many malignant tumors and its activation is associated with high hist...

متن کامل

Novel Small Molecules Disabling the IL-6/IL-6R/GP130 Heterohexamer Complex PRINCIPAL INVESTIGATOR:

The IL-6/GP130/STAT3 pathway is critical forthe progression of multiple types of cancers. We report here thediscovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 protein−protein interactions (PPIs) using multipleligand simultaneous docking (MLSD) and drug repositioningapproaches. Multiple drug scaffolds were simultaneously dockedinto hot spots of GP1...

متن کامل

Tumor suppressor LKB1 inhibits activation of signal transducer and activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine kinase rearranged in transformation (RET)/papillary thyroid carcinoma (PTC).

The tumor suppressor LKB1 (STK11) is a cytoplasmic/nuclear serine/threonine kinase, defects in which cause Peutz-Jeghers syndrome (PJS) in humans and animals. Recent studies showed that loss of function of LKB1 is associated with sporadic forms of lung, pancreatic, and ovarian cancer. In cancer cells, LKB1 is inactivated by two mechanisms: mutations in its central kinase domain or complete loss...

متن کامل

Study of STAT3 Expression in Different Phases of Patients with Chronic Myeloid Leukemia

Background and Aim: Chronic myeloid leukemia(CML) is a clonal myeloproliferative disease, characterized by BCR/ABL translocation. Using tyrosine kinase inhibitors such as Imatinib, treatment for this disease has progressed remarkably. However, resistance to tyrosine kinase inhibitor is a major obstacle. Signal transducer and activator of transcription 3(STAT3) is an important transcription fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 6  شماره 

صفحات  -

تاریخ انتشار 2013